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ABSTRACT
-N

This paper identifies important steps in the design of a special purpose VLSI chip, and

argues that the most crucial step is the design of the underlying algorithm. Because the

algorithm determines the degree of parallelism and pipelining that is possible, it largely

determines the performance of the chip. Furthermore, if the underlying algorithm has the

right properties such as modularity and regularity, then the rest of the design should be

routine and thus takes little effort. These claims are supported by a concrete example -- the

design of an efficient pattern matching chip, which has been fabricated for testing.
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SECTION i INTRODUCTION I

1. Introduction

We have now entered a technological domain where many of the problems encountered
before in building special-purpose hardware are no longer so severe. Current LS1
technology allows tens of thousands of devices to fit on a single chip, and future advances
should increase this number. Devices whose construction used to require many components
can now be built with just a few chips. This reduces the difficulties in, for example, the
reliability, performance, and heat dissipation problems that arise from combining many
standard SSI or K4SI components. Furthermore, although design of integrated circuits has
been regarded as difficult, the development of simplified techniques for structuring IC system
design such as those of (Mead and Conway 80] together with implementation guides such as
[H-on and Sequin 79] allow relatively naive designers to achieve success.

Special-purpose VLSI chips can be used as peripheral devices attached to a conventional
host computer. The resulting system can be considered as an efficient general-purpose
computer, if many types of chips are attached. Figure 1-1 illustrates how special-purpose
chips such as the pattern matcher, FFT device, and sorter might form a part of a
general-purpose computer system.

SYSTEM BUS 
_>

PPU rimary Pattern... i
ECPU Memory Matcher I F otr .. ik Tp

Figure 1 -1: Special-purpose chips attached to a general-purpose computer.

Although it is now feasible to construct complex special-purpose chips, the approach can
become successful only if the cost of designing these chips is not prohibitive. We argue in
Section 2 that the chip design time, which constitutes the major design cost, can be reduced
significantly if the underlying algorithm is designed carefully in the first place. 'Good"
algorithms are characterized in that section. This design philosophy is supported in Section 3
by a concrete example -- the design of a pattern matching chip. This chip was designed by
the authors in the Spring of 1979 at CMU Prototype chips have been fabricated, and are in
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the process of testing. Preliminary results show that the chip can achieve a data rate of one
character every 250 ns, which is higher than the memory bandwidth of most conventional
computers. This high performance is achieved in spite of little effort given to the circuit and
layout design. We attribute the performance mainly to the careful design of the underlying
algorithm.

Section 4 identifies the major steps in designing a special purpose VLSI chip. A
methodology is given that transforms an algorithm design into its final layout design in a more
or less mechanical way. We conclude in Section 5 that the time to construct special purpose
chips has come; with the right design philosophy and methodology, designing a special

purpose chip should not be more difficult than designing a high level algorithm for the same
job!
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2. Design Philosophy

We believe that in the course of designing a VLSI special purpose chip the most crucial

decision is the choice of the underlying algorithm. A large portion of the design effort should

go into designing and refining the algorithm, before beginning its realization at the circuit or

layout level.

Algorithms that perform well on conventional random access computers are not always the

best for VLSI implementation. As pointed out in (Sutherland and Mead 77], good algorithms

for VLSI implementation are not necessarily those requiring minimal computation.

Computation is cheap in VLSI; communication determines the performance. Thus in this new
era of computation we need to reconsider the algorithms for many tasks.

The characteristics of a good algorithm

A "good" algorithm in this context should possess one or more of the following properties:

1. The algorithm can be implemented by only a few different types of simple cells.

2. The data and control flow of the algorithm is sim2le and regula. so that in the
implementation cells can be connected by a network with local and regular
interconnections. Long distance or irregular communication is thus minimized.

3. The algorithm uses extensive pipelining and multiorgcessinM. Typically, several
data streams move at constant velocity over fixed paths in the network,
interacting at cells where they meet. In this way a large number of cells are
active at one time so that the computation speed can keep up with the data rate.

Algorithms with these properties have been named systoli c alorithms' in [Kung and

Leiserson 79]. Many systolic algorithms have been designed recently; see the survey given
in [Kung 79a4

Advantages of using good algorithms

Most special-purpose chips will be made in relatively small quantities, so the design cost

must be kept low. Several aspects of systolic algorithms help ease the design task:

1. One has to design and test only a few different, simple cells, as most of the cells
on a chip are copies of a few basic ones.

2. Regular interconnection implies that the design can be made modular and

'The word "systole" was borrowed from physiologists who use it to refer to the rhythmicaly recurrent
contractions, of the heart and arteries which pulse blood through the body. For a systolic algorithm, the function of a
tell is analogous to that of the heart or arteries. Each coll regularly pumps date in and out, each time performing some
short computation, so that a regular flow of date is kept up in the network.
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extensible. A large chip can be designed by combining the designs of small
chips.

3. By pipelining and multiprocessing the performance requirement of a special
purpose chip can be met by simply including many identical cells on the chip.

All these imply that if a good algorithm is used, the design time, and therefore the design
cost, can be substantially reduced.

Sumnmary of the design philosophy

Design modularity should be enforced at the algorithm design level. Performance and
design cost are determined, to a great extent, by the algorithm. A large portion of the design
time should therefore be devoted to algorithm design. Low level optimizations at the circuit
or layout design level are probably not worthwhile in most cases, as these will only lead to
minor improvements in the overall performance, but may greatly increase the design time.
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3. The Design of a Pattern Matching Chip

This section describes the design of a specific VLSI chip. The chip that we chose to
illustrate our design philosophy and methodology performs on-line pattern matching of

strings with wild card characters. We discuss the design of the underlying algorithm, and
demonstrate that it can be mapped to circuit and layout designs in a straightforward way.

This section can be red independently from the other sections as a detailed description of
the process of designing a chip in NMOS. The reader who is about to design his or her first

chip may find this section instructive.

3.1 The String Pattern Matching Problem

Our chip accepts two streams of characters from the host machine, and produces a stream
of bits as shown in Figure 3-1. One of the input streams, called the text string, is an endless

string of characters over some alphabet 1. The other input stream, the pattern, contains a
fixed length vector of characters over the alphabet Zu{x}, where x is the wild card character.

The output is a stream of bits, each of which corresponds to one of the characters in the text

strng. The data streams move at a steady rate between the host computer and the pattern
matcher, with a constant time between data items.

Pattern Matcher Host Computer

pattern ca AXC 001001100...

string ABCAACCOQ

result

Figure 3-1: Data to and from the pattern matcher.

Let us denote the input text stream as sOSlS 2 .... The finite pattern stream will be denoted
as POP1...Pk, and the output result stream as r0 rtr 2 .... Characters in the two input streams
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may be tested for equality, with the wild card character x deemed to match any character in

X. The output bit r i is to be set to I if the substring Si-kSi+.k...si matches the pattern, and

0 otherwise. That is,

ri +-(si-k - po) A (si+1.k I p ) A... A (si = Pk)-

In Figure 3-1, for example, the pattern AXC matches the substrings s0 sis 2 , s 3 s4 s5 , and

s4s~s6 (ABC, AAC, and ACC). Result bits r2 , r 5 , and r6 are thus set to 1, and all other result

bits are 0.

This problem is important in many applications. String pattern matching is a basic

operation in SNOBOL-like languages [Griswold et al. 68) and in database query languages.

String matching hardware has been proposed for use in office automation systems [Warter

and Mules 79]. Many artificial intelligence systems make heavy use of pattern matching as a

method of search. Furthermore, as pointed out in Section 3.4 below, string pattern matching

is similar in form to many stressing numerical computations, such as computing convolutions

and correlations. All of the linear product problems discussed in [Fischer and Paterson 74)

are similar to string matching.

Several fast algorithms are known for solving the string matching problem without wild

card characters on a normal random access machine [Boyer and Moore 77, Knuth et al. 77).

These methods use information about partial matches of the pattern with itself to avoid

redundant comparisons, skipping over parts of the string where partial match results may be

inferred from previous comparisons. When wild card characters exist in the pattern these

methods break down, since the "matches" relation is no longer transitive. The strings AC and

Xe both match AX, for example, but do not match each other. Information about matchings of

the pattern with itself is therefore irrelevant if wild card characters are present. The fastest

algorithm known for string matching with wild card characters is based on multiplication of

large integers [Fischer and Paterson 74], and requires more than linear time. The pattern

matching chip solves the problem in linear time by performing comparisons in parallel.

3.2 The Chip Design

3.2.1 Algorithm Design

Data flow

The pattern and the text string arrive alternately over the bus one character at a time. We

will call the interval during which one character arrives from either stream a beat. During

each pair of consecutive beats the chip must input two characters and output one result. All
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characters on the chip move during each beat.

The chip is divided into character cells, each of which can compare two characters and

accumulate a temporary result. The pattern and string follow a preset path of calls from the

time they enter the chip until the time they leave it. On each beat every character moves to

a new cell. We use a linear array of cells, with the pattern and string moving in opposite

directions, to make each character of the string move past all characters of the pattern. To

make each pair of characters meet, rather than )iust pass, we must separate them by one cell

so that alternate cells are idle. Each cell is then active on alternate beats. The flow of

characters is traced for several beats in Figure 3-2.

pattern

A string

A Wn
pattern

A string

pattern

A

pattern

A

patFtern Ts

A string

Figure 3-2: The flow of characters.
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For illustration let us follow the history of the character cell indicated by the arrowhead in

Figure 3-2, starting when the first character of the pattern, PO, is present. Suppose the

string character si is present during this beat. During the next beat the cell is ice, but during

the beat after that it contains p1 and st,. Two beats later, P2 and si+2 are together, then

P3 and st+ 3 , and so on. By the time the last pattern character Pk leaves the cell, the

substring sisi+1... sik will have met the whole pattern. We can therefore keep the partial

match results in this cell, update it whenever a new pair of characters enters the cell, and

output the results after the last character of the pattern goes past. To output results we

shift them along with the string, so that each match result leaves the array with the last

character of its substring. If we recirculate the pattern so that the first character follows two

beats after the last one, we can output the completed result and initialize a new partial result

on the same beat. The number of character cells required is therefore no more than the

number of characters in the pattern.

Each character cell performs two separate functions: it compares characters of the pattern

and string, and it updates and outputs match results. We can divide these functions between

two modules, so that there are two linear arrays with connections between corresponding

cells as shown in Figure 3-3. The cells on the top are the comparators; the pattern flows

through them from left to right, and the string flows from right to left. The bottom cells, or

accumulators, receive the results of the comparison from above. They maintain partial

results, and shift completed results right to left. Two bits associated with the pattern flow

through the accumulators from left to right. One of these bits, called A, marks the end of the

pattern. It is one for the last character of the pattern and zero for the others. The other bit

is x, the don't care bit, which marks the wild card characters. A one in this bit tells the

accumulator to ignore the result from the comparator, since this pattern character matches

anything.

pattern -

string

AP

x

result

Figure 3-3". Comparators (on the top) and accumulators (on the bottom.)
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We can further divide the comparators. Rather than using one large circuit to compare

whole characters, we can divide each comparator into modules that can compare single bits.

Two characters are equal if corresponding bits are equal. By staggering the bits so the high

order bits enter the array before the low order ones, we can make a pipeline comparator.

Each single bit comparator shifts its result down to meet the bits coming into the next lower

comparator. The active and idle comparators ilternate vertically as well as horizontally, so

that on each beat the active comparators for:m a checkerboard pattern as shown in Figure

3-4.

Pattern String

bit 3

bit 2 1P

i-2 bit I

bit 0 P

Comparison results from the character coll irihicu::lt

by A in Figure 3-2 are available here.

Figure 3-4: Comparators for single bits.

Cell algorithms

Now we are ready to design the two kinds of cells to be used in the pattern matcher.

- The one-bit comparator has one bit of the pattern flowing from left to right, one
bit of the string flowing from right to left, and the comparison result for the pair
of characters flowing from top to bottom. The cell uses this algorithm to update
the comparison result:
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d.
Pout pin

Pin P out

o u t in
eout 

in

dout , din AND ( pin * in)
d
out

- The accumulator receives din, the result from the comparator above, 'in, the end
of pattern indicator, and Xin, the don't care bit. It maintains a temporary result t,
and at the end of the pattern uses t to replace the result r that flows from right
to left.

d.

Aout 4 Xin

in out
x ot 4- in

IF Ain xin xout
ou in

THEN rout 4- t t *- TRUE rout in

ELSE r out *- r in *- I AND (x in. OR d in

3.2.2 Circuit and Layout Design

Dataflow circuit

Each of the pipelines used for data flow in the algorithm is implemented as a unidirectional

shift register that shifts on each beat. Every other cell of the shift register contains valid

data. In NMOS, the technology used for this chip, a shift register is composed of a chain of

inverters separated by pass transistors as shown in Figure 3-5. When the voltage on the

gate of a transistor is near the supply voltage Vdd, its channel conducts current, while if the

voltage is near ground it does not. The inputs to the inverters can store charge, so data is

stored within the inverters, and the pass transistors control the inverter inputs. A clock with

two non-overlapping phases controls the pass transistors. Adjacent transistors are turned on

by opposite phases of the clock, so that there is never a closed path between inverters that

are separated by two transistors. Alternate inverters can therefore store independent data

bits.
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data in data out

clock phase 1 I

clock phase 2 j

Figure 3-5: A shift register in NMOS.

The dynamic alternation of active and idle inverters in the NMOS shift register mirrors the
alternation of active and idle cells in the algorithm (cf. Figure 3-4). Each cell can thus contain
one gated inverter from each of the shift registers that passes through it. The clock
controlling the shift register stages in a cell can activate the cell. The shift register
components are then fully utilized: all idle inverters are in idle stages.

Cell circuit

Since each cell inverts its inputs before sending them to its neighbors, two versions of
each cell must be constructed. One version operates on positive-inputs to produce inverted
outputs, while the other computes positive outputs from inverted inputs. Transforming a cell
algorithm to its inverted twin is straightforward, so the existence of two versions presents no
problems. Using the cell algorithms, we can design circuits for the twin versions of each cell.
From the circuit designs, we can lay out the masks for fabricating the chip. We will illustrate
the process with the positive version of the comparator cell. This version takes positive
inputs and produces inverted outputs, so we must invert the outputs in the comparator
algorithm:

d

Pout ~- NOT Pi
Pin Pout

Si 

6

out - NOT Oi. 

-

.

dout

In NMOS, data storage can take place on the input to any logic gate, as long as that input
can be isolated by a pass transistor. We will implement the p and s shift registers with
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inverters, as planned, but we can use a NANO gate as the stage for the d shift register.
Figure 3-6 is the circuit for the positive comparator. When the clock input goes from ground

to Vdd, the power supply voltage, all three pass transistors turn on. The pattern and string
inputs are then stored on~ the inverters, and the d input is stored on one input to the NANO
gate. The exclusive NOR gate outputs TRUE if the two inputs are equal, and FALSE otherwise.
The output of this equality test goes to the other input of the NAND gate, which computes
dout. After the inputs have stabilized, the clock goes to ground. The outputs of this cell then
provide stable inputs to neighboring cells until the clock goes high once again.

Pin-I> Pout

sout si

doutclk

Figure 3-6: Positive comparator circuit.

Call sticks

.The next step after completing the circuit diagram is to design the topological layout, or
stick diagram, for the cell. The stick diagram shows the relative positions of all signal paths,
power connections, and components, but hides their absolute sizes and positions. Most of the

circuit components can be implemented in several ways, and a choice among these
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implementations must be made during this stage of the design.

Silicon-gate NMOS technology uses three conduction layers, which are differentiated by
color in the stick diagram. Following the convention in (Mead and Conway 80], in our
diagrams blue lines represent metal conduction paths, red lines represent polycrystalline

silicon (polysilicon) and ereen lines represent diffusion into the substrate. The three layers
are insulated from each other except at contact cuts, which are represented by round black
dots. The yellow squares are areas of ion implantation, used to create depletion mode

transistors. These serve as pullup resistors in the gates and inverters.

Field-effect transistors are created in 14MOS by crossing a diffusion path (green) with a
polysilicon area (red). The green path is the channel, and the red area is the gate. If no ion
implantation is present, the channel conducts current only when the gate is at Vdd.

The positive comparator cell uses pass transistors and inverters to implement the shift
registers. In addition to these, it uses a NAND gate and an equality, or NXOR, gate. These

basic components are combined in Plate I to produce the stick diagram for the positive
comparator cell. Power and ground run horizontally across the cell on metal (blue) paths.
The clock is in polysilicon (red) at the top and right edges of the cell. It dips below the
upper power wire near the middle of the cell to allow the cell above to connect to the power
wire. Data paths for p and s run horizontally along the top, white d runs downward in
diffusion (green).

Let us trace the p data path through the cell. It enters at the left in diffusion, and passes
through the channel of a transistor that is gated by the clock. Contact is made to a
polysilicon path that goes to the input of the p inverter. The inverter output, in metal,
crosses the d data path with no interaction and provides an input to the equality gate. It
then passes over the s inverter, and leaves the cell at the right.

Layout

When stick diagrams have been designed for all of the cells, actual layouts can be
produced. These layouts follow the topology of the stick diagrams, but also include the

absolute sizes and positions of all components. Designing a layout involves choosing

electrical parameters for all transistors, as well as following minimum spacing rules for the

intended fabrication process. Care must be taken to line up power connections and data paths

that cross several cells. In principle the layout can be designed mechanically from the circuit
and stick diagrams.

When the layouts for all cells are complete, they are assembled into a working array with
the inputs and outputs hooked to contact pads. Layouts are described using a graphics
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language (such as Caltech Intermediate Form, see [Mead and Conway 80]) that can be
interpreted to make the masks. These masks are then used to fabricate the chips. Plate 2 is
a photograph of a prototype pattern matching chip that can handle patterns containing up to
eight two-bit characters.

3.3 Discussion of Design Alternatives

There were many points in the design of the pattern matching chip where a choice among
several alternatives was made. This section describes some of the more important design
decisions. There were three major areas of choice: choice of an algorithm, choice of a data
flow implementation, and choice of a method for cell implementation.

3.3.1 Alternative Algorithms

There is a bewildering variety of algorithms that could form the basis for a pattern
matching chip. The desire for simple and regular data flow rules out the fast sequential
algorithms described in (Knuth et al. 77) and [Boyer and Moore 77]. It seems that these
algorithms require dynamically changing communication, so that any hardware implementation
will not be modular and is likely to be quite complex.

Mukhopadhyay [MuKhopad~hyay 79) has proposed several machines in which each cell
stores a character of the pattern, and the text string is broadcast character by character to
all cells. The broadcast communication is the major disadvantage of this algorithm. Each cell
requires a connection to the broadcast channel, which either increases the power
requirements of the system as a whole or decreases its speed. Our algorithm requires no
broadcasting of data.

An algorithm that is similar to ours uses a linear array of cells with data flowing in only
one direction. The pattern is permanently stored in the array of cells, and the text string
moves past it. Partial results move at half the speed of the text so that they accumulate
results from an entire substring match. This algorithm was rejected because of the static

storage of the pattern. Loading the cells in preparation for a pattern match would require
extra time and circuitry.

The algorithm actually chosen (described in Section 3.2.1) is well suited to VLSI
implementation. All communication is local, since each character cell communicates only with

its left and right neighbors. This local communication enhances modularity and extensibility,
as well as avoiding the large drivers needed for long range transmission. Only a few types of
cells are used, with many copies of each type. By replicating the basic cells, pattern
matching chips of any size can be formed. Finally, there is no separate operation required to
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set up the system for a new problem, so control of the chip is simplified.

3.3.2 Alternative Data Flow Implementation&

Although the global flow of data is determined by the choice of algorithm, several methods
of implementing the data flow may be possible. Serial or parallel data transmission between
cells may be selected, for example. Communication may be coordinated in several ways. The
data flow can even be transformed to combine several cells into one circuit. We will discuss
two of the decisions that arose in implementing the data flow of the pattern matching chip.

The existence of idle cells can be avoided by combining pairs of neighboring cells when
implementing the data flow. Each cell pair then contains one active cell and one idle cell at
each beat, so circuitry can be shared between the two cells. For the pattern matching chip,
for example, the equality gate could have been shared between neighboring comparators, and
the d data path could have been multiplexed.

If the amount of circuitry that can be shared is large enough, it may be advantageous to
combine two or more cells in this way. Some additional circuitry will of course be needed to
coordinate the sharing, and this may wipe out the savings. The increased interdependence of
the circuit components may also offset fte savings, since design changes may become more
difficult, and errors may be made. The pattern matcher cells are too small to profit from this
data flow transformation.

Another choice in data flow implementation is between self-timed and clocked
(synchronous) data paths. In a clocked data flow implementation, all data movement is under
a centralized control. The data flow controller sends signals to each cell to enable data
transfers. The pattern matching chip uses clocked data flow. In fact, the data flow control
signals are the same clock signals needed for data refreshing, although this need not be tru.
in general.

In a self-timed implementation, data flow control is distributed among the cells, so that each
cell controls its own data transfers. Neighboring cells must obey a signalling convention to
coordinate their communication. Self-timed data flow has advantages in modularity and
extensibility, since no common clock is needed. Each of the cells may run at its own pace,
synchronizing with its neighbors only when communication is needed. The disadvantage Is
the extra circuitry needed to implement the signalling conventions. For systems that are
small enough to use a common clock, like the pattern matching chip, the clocked data flow
implementation should be chosen. For larger systems, of course, self-timed communication
may have to be used (see, e.g. [Seitz 79]).
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3.3.3 Alternative Coll Implementations

Two major decisions affected the design of the cells. Static shift registers, which can hold
data for long periods without shifting it, were rejected in favor of dynamic shift registers,
which cannot. Also, a random logic implementation of the cell circuitry was chosen rather
than a more structured approach using standard PLA (programmed logic array) and register
layouts.

The dynamic shift registers that we used are incapable of holding data for more than about
tins. without shifting. Data is refreshed only by shifting it. Static shift registers, the
alternative choice, have regeneration circuitry in every stage so that data can be held
indefinitely without shifling it. A third signal, in addition to the two clock phases, is needed
to command the register to shift.

Static shift registers are probably the better choice for most systems. They do not invert
data between stages, as do dynamic shift registers, and they simplify testing. For this chip,
however, dynamic shift registers have advantages. The alternation of active and idle cells
allows just one inverter from each shift register to be placed in each cell. This permits the
two phase clock to do double duty as a data flow control signal. The cells and the global
layout are thus simplified greatly.

The use of random logic was dictated by the simplicity of the cell functions. If cells contain
more than a few gates the state-machine design approach should be taken. The state of the

* cell may be held in a register, and the combinational logic used for changing states can be
implemented with a PLA. Standard layouts for registers and PLA cells are available, so this
approach simplifies the design and layout tasks. It also shortens the time for design changes
and correction of errors. The small size of the pattern matcher cells, which contain only four
gates each, made the use of random logic possible. Design and layout of such simple circuits
is quite easy.

3.4 Uses and Extensions of the Pattern Matching Chip

A pattern matching chip with n character cells 'can be used directly only for Matching
patterns of length up to n. Longer patterns require the existence of more than n partial
results at each beat. Since any chip must be of finite size, it is important that the chip be
extensible. It should be possible to combine several chips to form a larger pattern matcher.

In order to make the chip extensible, more inputs and outputs must be provided.
Specifically, an input for the result stream and outputs for the pattern and text streams must



SECTION 3 THE DESIGN OF A PATTERN MATCHING CHIP 17

be available. Several pattern matching chips can then be cascaded, as shown in figure 3-7.
The inputs to each chip in figure 3-7 are taken from the outputs of its neighbors, so that the
cells on all of the chips form a single linear array. The pattern is fed to the inputs of the
leftmost chip, and the text string is input to the rightmost chip. The result output Is taken
from the leftmost chip. A cascade of k chips with n cells each can match patterns of up to kn
characters.

pattern

stig Chip 1 4 Chip 2 Chip 3 Chip 4 4-Chip 5

x --b

result <-4

Figure 3-7: A five chip pattern matcher.

If the pattern to be matched is longer than the capacity of the available pattern matching
system, the pattern can be run through the system several times to match it against the
entire string. If the system contains a total of n character cells, each run will match the
complete pattern against m substrings. To cover all substrings, all we need do is delay the
string by n characters on succeeding runs.

Many problems other than string matching can be solved by similar algorithms. Special
purpose hardware f or these problems can be designed by modifying the design of the
pattern matcher. For example, we might wish to count how many characters in each
substring, match the corresponding characters in the pattern. This problem can be solved by
replacing the result bit stream by a stream of integers, and replacing the accumulator cell by
a counting cell:

IF A inkn.w
THEN r ti f 0-0 mi tout

ELSE IF~ i O R d.nroui

THEN I 1# 1; ow i

ELKE rou in
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A problem of more practical interest is the computation of correlations. In this problem

pattern, string, and result are all numbers. The result ri of a correlation is defined as:

r, - (si- k - po) 2 + (s,+I k - + (si - Pk)2 .

A good match of substring to pattern results in a high correlation.

Correlations can be computed by a machine with identical data flow to the string matching

chip, except that all streams contain numbers. The comparator is replaced by a difference

cell that computes:

dout 4" sin - Pin-

This difference computation may be pipelined bitwise in the same way as the character

comparison.

An adder cell replaces the accumulator. The algorithm for the adder cell is:

IF X'in
THEN rout -t; t +- 0

ELSE rout 4- rin; t +- t + din2

Many other problems, such as convolutions and FIR filtering, have algorithms that use the

same'data flow (see [Kung 79b, Kung and Leiserson 79]). It should be cear that special

purpose hardware sinrilar to the pattern matching chip can be built for any of these

problems.
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4. Design Methodology

When designing a complex system of any kind, a systematic approach is essential. The

design task must be broken imto manageable subtasks, with a well defined f low of information

between them. Each subtask can then be performed separately, with no need to consider

more than one subtasK at a time. This allows division of labor, and, more importantly,

prevents mistakes and eases design changes.

Because of the diversity of tasks and concerns in VLSI design, a systematic method is

especially important in designing a special purpose chip. It is impossible to take global data

flow, circuit design, and transistor characteristics, for instance, into account all at once. We

must find small subtasks, with boundaries between them that hide the implementation details

of one from another. Of course, any set of subtasks is unlikely to be completely independent,

since problems that crop up in performing one of them may require that another subtask be

redone. Difficulties in layout, for example, may mandate a circuit redesign, but these design

iterations will be easier if the interactions between subtasks are few.

Several natural information boundaries are available in the design of VLSI systems. One

advantage of the use of geometrically regular algorithms is the spatial separation that they

impose between subsystems. The interior of one cell can be designed in ignorance of the

interior details of another (although such exterior details as size and data path positions must

be known), If cells are complex, the separation of circuit functions within each cell may

providle an additional information boundary. The design of each functional block of a cell can

then be largely independent of the others. A further aid to VLSI design is the existence of a

hierarchy of abstract models of the chip, from the algorithm level to the gate level to the

layout level. Each level of the hierarchy deals with an independent set of design issues,

serving as an implementation of the next level up, and a specification of the next level down.

The chip design can thus be decomposed geometrically, functionally, and hierarchically. To

use all of these decompositions to their best advantage we must make sure that they are
consistent. Tasks that are separated geometrically should also be separated functionally and

hierarchically. It wMould be unfortunate, for example, if all cell circuits had to be considered at
once in order to construct a stick diagram for the chip. The way to avoid this is to carefully

construct a task dependency graph before beginning the design. This graph should contain

alt of the subtasks to be performed, together with the information needed for each and the
precedence relations among them. Of course, backtrack paths that may result in several
iterations of one task because of difficulties in another need not be shown. The chip design
task is not yet well enough understood to predict such backtracking.

The purpose of the task dependency graph is to make sure that no more than a small
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amount of knowledge is required for any subtasK. Each of the subtasks in the graph should

deal with the design of one geometric area at one level of abstraction. The circuit design of

the entire chip all at once, for example, is too large a task, since it covers too much area.

The task of designing a cell stick diagram from its function is too large, since it spans too

many levels of the hierarchy. Designing a cell circuit from its function is probably a task of

the proper size, although if the cell performs several different functions, the task should be

further subdivided. While constructing the task dependency graph, we can make sure that no

task is too large, as well as making sure that all information needed for a particular task will

be available when that task is performed.

Figure 4-1 is the task dependency graph for the design of the pattern matching chip. It

should be suitable for designing chips of about the same scale. The subtasks in the graph

were chosen so that each deals with only ore geometric region, one circuit function, and one

level of the VLSI abstraction hierarchy. The arrows indicate the flow of information between

subtasks. In the following we shall briefly dlescribe each of the subtasks. The design of the

pattern matching chip described in Section 3.2 followed the steps in this graph, although the

graph was not explicitly drawn at the beginning.

Algorithm

The chip design must begin with an algorithm design, which specifies conceptually the

overall structure of the chip. In general, several algorithms will exist for any problem, and the

best should be found at this stage. The algorithm design is an integrated effort th~at includes

the design of a data flow and geometry for the overall system, as well as a specification of

the function of each type of cell. The algorithm is a level of abstraction at which to think

about important properties such as regularity and modularity, without worrying about

low-level issues. It should supply two distinct bodies of information to the implementation.

One of these is the data flow pattern, including the number of cells, their geometric
placements, and the choreography of data. The types of cells should be distinguished, and

the beats on which each cell is active should be identified. The other body of information is

the function of each cell type. This is not just the circuit function, but also the relative

positions of signal inputs and outputs, and the sequence of activity on each beat.

Cell Combinations and Placements

Cells in the implementation might not correspond one to one with the cells in the algorithmn.
Several cells may be combined to share components, for example, or rarely used
communication paths in the algorithm might be multiplexed onto one physical data path. The
first task in implementing the algorithm is to decide upon these combinations, and to position
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PROBLEM

A FUNCTIONS OF DATA FLOW-

ALGORITHM CELL TYPES AND GEOMETRv

CELL COMBINATIONS
AND PLACEMENTS

------------------------------------------
GATE LEVEL CELL CIRCUIT DATA FLOWCONTROL CIRCUIT

CELL TIMING
SIGNALS

STICKS LEVEL CELL STICKS I COMMUNICATION STICKS

I __

r-----------------------------

LAYOUT LEVEL CELL LAYOUTS t> CELL BOUNDARY LAYOUTS
,------ / - -

MASKS FOR FABRICATION

Figure 4-1: Steps in the design of a special purpose chip.

cells and cell combinations upon the chip.

From the algorithm data flow, this task requires the pattern of active and idle cells at each

beat, and the use of each communication path. From the cell functions it requires the

shareable subfunctions and the complexity of each cell type. The output of the task is a

skeleton layout for the chip, with each cell group assigned a location and set of contained

cells.
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Data Flow Control Circuit

This task is the design of the control circuitry that ensures the orderly movement of data

on the correct beats. To perform this task we must learn the correct sequence of beats from

the. algorithm data flow, along with which elements are active on each beat. From the cell

combination task we learn which cell groups and physical data paths contain the active

elements.

Based on the size and intended use of the chip we can decide whether the data flow

should be clocked or self-timed. If a clock is to be used we decide whether to generate it on

the chip or externally. The shift registers for data movement can then be designed, and any

clock wires or synchronization signals can be routed among the cell groups on the skeleton

layout.

Cell Logic Circuits

We are now in possession of the three pieces of information needed to design circuits for

the cells. These are the cell functions (from the algorithm) the group of cells to be

implemented by each circuit (from the cell combination step) and the shift register stages that

must be included in each cell (from tlhe data flow control). If the cell functions are simple

enough, ad hoc techniques of circuit design may be adequate. If the functions are complex,

the cells may be split into subsytems to be designed independently. In this way, full

advantage may be taken of the functional decomposition of each cell. In addition, the circuit

for each cell type can be designed without reference to the others, since all communication

needs have been considered in the data flow control. In designing the circuits, consideration

must be given to how the chip will be tested after fabrication.

Cell Timing Signals

A cell function may have several distinct steps to be performed in sequence on each beat.
In the pattern matching accumulator, for example, the assignments

rout +- t; t -TRUE

must take place in the correct order. The cell circuit, especially in a clocked system, may
require signals to control such sequences, in addition to the signals needed for cell activation.

These signals should be supplied by the data flow control. Any such signals should be
identified as soon as the cell circuits are all complete, and circuits to generate them added to

the data flow control.
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Communication Sticks

When the circuitry of the data flow control is complete we can draw its stick diagram. For

geometrically regular chips this will consist of an open network of communication path

routings, with blank spaces left for the cells, together with some control circuitry. If there is

centralized clock circuitry on the chip, its topology can be designed. The distribution network

for power and ground should also be designed at this stage.

Cell Sticks

The topological layouts of the individual cells can now be designed. The relative locations

of power, ground, and all inputs and outputs are known from the communication sticks. We
must now choose implementations for the circuit elements and decide on the relative positions

of internal data paths.

Cell Layouts

Once the topological layouts of the cells are complete, the detailed layout of each cell is

possible. Following the design rules for the intended fabrication process, actual dimensions

for each electrical component and distances between circuit elements must be choten. The

output of this task is a scale drawing of the cell.

Cell Boundary Layouts

With cell sizes known, the cell boundaries can be laid out. The topology of the

communication paths and dlataflow control is known from the communication sticks. Wire

lengths and spacings can be chosen, as can distances between cells. Inputs and outputs can

be connected to contact pads, which will be connected to pins on the IC package. The cell

boundary layouts and the cell layouts form a complete description of the chip. Once they are

complete, masks can be made and the chip can be fabricated.

Summary of the Design Methodology

With the help of the task dependency graph, the seemingly complicated process of

designing a special purpose chip can be carried out systematically, one subtask at a time.

The graph presented here, although based on limited design experience, seems to be a good

starting point. We believe that the design tasks below the algorithm level are relatively
routine and may (in principle at least) be helped a great deal by various (future)

computer-aided design systems. Eventually the algorithm design level will be the one area
requiring substantial effort and experience from a designer.
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5. Conclusion

Over the past few years efforts in several fields of computer science have converged to

make possible the design of special-purpose chips, as described in this paper. The study of

parallel algorithms, particularly those f or mesh-connected computers, has provided techniques

for VLSI algorithm design (see the survey [Kung 79a]). The work of [Mead and Conway 80]

in developing structured techniques for NMOS design has eased the design of reliable circuits

and layouts. Improvements in computer-aided dlesigin and graphics systems have reduced the
drudgery of designing the masks. Finally, the development of suitable intermediate languages
makes the design and fabrication processes relatively independent, and allows designs to be

shared among several users.

These developments allow the relatively inexperienced designer to develop chips quickly

and confidently for his own application. E8y concentrating on algorithms, chips of good
performance and fairly small area can be constructed with minimal design time. The design of

the pattern matching chip described in Section 3.2 took only about two man-months. We

should see many designs for special purpose chips appearing in the near future.

Further developments can make the task of the designer even easier. It is possible, for
example, to build libraries of standard cells, similar to subroutine libraries. If a designer
needs, say, an inner product step cell, he may be able to select it from a library rather than

construct it himself. Libraries of dlataflow implementations are also possible, although their

forms are less obvious.

Advances in fabrication technology may increase the scale of projects that can be
attempted. Aside from reductions in feature size, the prospect of wafer-scale integration will

increase the power of special purpose devices. Modularity of algorithms is especially

important in wafer-scale integration, where the circuits on a wafer of silicon are
interconnected rather than being cut apart for individual packaging. Manufacturing defects

make it essential to be able to modify the interconnections so that a defective circuit is

replaced by a functioning one on the same wafer. This can be done easily if there are only a

few types of circuits with regular interconnect ions.

In conclusion, we believe that with the design philosophy and methodology described in the

paper the design of special-purpose VLSI chips by their users is practical. Connected to a
general-purpose computer, these devices can provide rapid solutions to Stressing

computations. The time to design special purpose chips has come.
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